Health Technologies

Researchers uncover potential new biomarker for psychosis diagnosis

The current standard of care for psychosis is a diagnostic interview, but what if it could be diagnosed before the first symptom emerged?

Researchers at the Del Monte Institute for Neuroscience at the University of Rochester are pointing toward a potential biomarker in the brain that could lead to more timely interventions and personalised care.

Brian Keane, PhD is assistant professor of Psychiatry, Center for Visual Science, and Neuroscience at the University of Rochester Medical Center

Keane recently co-authored an article in Molecular Psychiatry that identifies how MRI scans could reveal brain differences in people with psychosis.

The researcher said: “Establishing such biomarkers could provide a key step in changing how we care for, treat, and offer interventions to people with psychosis.

“Aside from potentially predicting future psychosis onset, biomarkers could also help stratify patients into clinically meaningful subgroups and suggest new options for treatment or intervention.”

Using data collected by the Human Connectome Early Psychosis Project, researchers looked at MRI scans from 159 participants.

These included 105 who developed a psychotic disorder up to five years prior to testing. In the brains of participants with psychosis, researchers found that sensory regions in the cortex were more weakly connected to each other and more strongly connected to the thalamus, the brain’s information relay station.

These differences were confined to the somatomotor network, which processes bodily movement and sensations, and a visual network, which generates representations of objects, faces, and complex features.

Combining the dysconnectivity patterns across these two networks allowed the researchers to create a “somato-visual” biomarker.

Previous research has suggested that abnormal brain connectivity exists prominently in the sensory networks of people with schizophrenia, but it remained unclear which networks were most responsible or whether dysconnectivity could be explained by other illness factors, such as antipsychotic use, anxiety or stress.

Keane said: “What makes this biomarker unique is its large effect size, its robustness to over a dozen common confounds, and its high reliability across multiple scans.

“A single five-minute scan could potentially improve our ability to predict which at-risk individuals will transition to a psychotic disorder, which in turn could allow for more timely treatments or interventions.

“It also gives us a place to keep looking. An important next step will be to determine if the somato-visual biomarker emerges before or as psychosis begins.”

You may also like

Health Technologies

Accelerating Strategies Around Internet of Medical Things Devices

  • December 22, 2022
IoMT Device Integration with the Electronic Health Record Is Growing By their nature, IoMT devices are integrated into healthcare organizations’
Health Technologies

3 Health Tech Trends to Watch in 2023

Highmark Health also uses network access control technology to ensure computers are registered and allowed to join the network. The